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ABSTRACT

As part of the program to utilize LDEF data for evaluation and improvement of current ionizing
radiation environment models and related predictive methods for future LEO missions, calculations have

been carried out to compare with the induced radioactivity measured in metal samples placed on LDEF.
The predicted activation is about a factor of two lower than observed, which is attributed to deficiencies in
the AP8 trapped proton model. It is shown that this finding based on activation sample data is consistent
with comparisons made with other LDEF activation and dose data. Plans for confirming these results
utilizing additional LDEF data sets, and plans for model modifications to improve the agreenient with
LDEF data, are discussed.

INTRODUCTION

The measured activation of materials on LDEF from radioactivity induced by trapped proton and
cosmic ray environments provides an important data set for checking the accuracy of environment models
and associated calculational methods for predicting the activation of spacecraft and payload materials in
low-Earth orbit. Such modeling accuracy is of particular interest in radiation background assessments
and component material selection in the design of space-based sensors.

In the present work, predictions have been made to compare with the observed radioactivity in
several metal samples intentionally placed on LDEF as activation experiments. Model comparisons with
LDEF activation measurements of spacecraft components and with thermoluminscent dosimetry (TLD)
data have been reported previously (refs. 1,2). A result from these previous model/data comparisons is
an estimate of the accuracy of the current AP8 trapped proton model for low-Earth orbit applications. The
activation experiment sample data considered here provide an important additional data set for model

comparisons by allowing a consistency check of the different data sets, previous model/data comparisons,
and previous conclusions related to quantifying the trapped proton environment modeling uncertainties.
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The activation experiment samples consisted of the metals nickel, tantalum, vanadium, indium, and

cobalt placed in experiment trays at various locations on LDEF (Table 1), with sample sizes typically 2 in.
x 2 in. and either 0.125 or 0.25 in. thick (ref. 3). A total of some 20 radioisotopes have been measured

from these samples. We have not made predictions to compare with all of the measured radioisotopes for
the following reasons: First, the primary objective of the present calculations is to compare with those
radioisotopes which are produced by primary trapped protons so that previous conclusions on the
accuracy of the AP8 model derived from model comparisons with other LDEF data can be checked.
Some estimates are included here for isotopes produced by secondary neutrons and galactic cosmic rays,
but the calculational method used for these estimates is less rigorous than than that used for the trapped

proton produced isotopes. Secondly, the activation cross sections needed in predicting certain isotopes
are not adequately known to provide the prediction accuracy needed in evaluating trapped proton model
uncertainties. For these reasons, the predicted isotopes here are restricted to the nickel and vanadium

samples.

The model comparisons made here with activation sample data provide a measure of the trapped
proton flux model uncertainties, but information on the trapped proton anisotropy is difficult to interpret
from these data because the samples are under different amounts of shielding at different locations (Table

2). The tray clamp activation data, which provide a detailed spatial mapping and are mostly free of
shielding effects, provide a better data set for anisotropy model evaluations, as addressed in ref. 2.

The activation modeling approach has been to perform detailed calculations so that differences
between the predicted and measured activations can be attributed to uncertainties in the incident radiation
environment. Thus, as described below, predictions are based on a detailed treatment of the trapped

proton environment (taking into account proton anisotropy, flux altitude dependence with mission time,
and solar cycle dependence) and radiation transport using a detailed 3-D mass model of the LDEF

spacecraft and experiment trays to account for shielding effects.

PREDICTION METHODS

Radiation Environment -- The LDEF trapped proton exposure predicted by Watts, et al. (ref. 4) is
used, which is based on the AP8 omnidirectional flux model (ref. 5), the anisotropy model of Watts, et
al. (ref. 6) to obtain directionality of the incident flux spectrum, a detailed altitude dependence during the
LDEF mission, and an interpolation of the solar minimum (AP8MIN) and solar maximum (AP8MAX)
versions of the AP8 model according to the F10.7 cm. solar flux to account for solar cycle variations of

the proton flux during the mission. For incident galactic protons, the LDEF orbit-average exposure from
ref. 7 was used, which is based on the interplanetary spectrum of Adams (ref. 8).

Shielding Model -- The 3-D mass model developed for LDEF radiation analyses (ref. 9) was used.
This model was extended for the present calculations to incorporate each of the activation samples -- i.e.,
the actual size and location of all of the individual activation samples were included in the shielding
model.

Radiation Transport -- For incident trapped protons, radiation transport calculations were made
using the Burrell primary proton transport code (ref. 10) and the 3-D mass model of LDEF with the
activation samples included. At each spatial point in the activation samples where flux spectra were
calculated, an angular grid of 720 equal solid angle bins around the point was defined, with a different
energy spectrum incident in each solid angle to account for the trapped proton directionality. For
examining activation produced by incident galactic protons, particle spectra (primary protons, secondary
neutrons and protons) from previous (ref. 7) Monte Carlo (HETC code) transport calculations for a
simple geometry model (1-D slab of aluminum) were used. Thus, the activation estimates from the
galactic environment is approximate due to the geometry simplification, but, as discussed above, the
trapped proton activation is the main interest here.

204



Radioisotope Production -- Flux spectra calculated at the center of each activation sample were
folded with measured activation cross sections (shown later) compiled from the literature to compute
radioisotope production as a function of time during the mission, with decay rates then applied to obtain
the radioactivity at LDEF recovery. (As a check on the approximation of using the flux only at the center
of the sample, volume-average fluxes from a fine grid of flux points were computed for several samples

and compared with the single point flux; the resulting activations agreed to within about 10% or less).

PREDICTED VS. MEASURED SAMPLE ACTIVATION

A summary of the LDEF activation sample measurement results is given in Table 3. Final data
analyses and intercomparisons of measurements at different facilities have not yet been completed for all
of the isotopes produced (ref. 11), so the data shown here are preliminary at present.

Vanadium Activation

Activation data for the vanadium sample are well suited for model comparisons because vanadium

has a single target isotope (99.75% 51v) and a single measured radioisotope (46Sc), so the production

mode is well defined for predictions; the activation cross section is well known (Fig. 1); and the energy

threshold for 46Sc production is relatively low (- 30 MeV), so the production is almost all (= 96%) from
incident primary trapped protons rather than from secondaries or galactic cosmic rays.

A comparison of the measured and calculated 46Sc activation for the vanadium samples is shown in
Fig. 2. Both the measured and calculated activities indicate only a small dependence on sample locations,
suggesting that differences that might be expected due to the trapped proton anisotropy are masked by
differences in shielding (Table 2). The average ratio of predicted to measured activity for samples at all
locations is 0.49 + 0.11.

Nickel Activation

Predictions for the nickel sample activation are not as simple as for vanadium because there are
various production modes (Table 4), requiring a large number of activation cross sections (e.g., Fig. 3
for proton induced reactions), and secondary neutrons are important in producing some of the isotopes.
A comparison of predicted vs. measured activities for the nickel sample in Exp. P0006 (Fig. 4) shows

that trapped protons dominate the production of 54Mn and 56Co, but neutrons dominate the 58Co and

60Co production, and cosmic rays dominate the 46Sc production due to its high energy threshold. The
calculated and measured activities for nickel samples at all locations are compared in Table 5. The average

ratio of predicted-to-measured activities for the two isotopes (54Mn and 5612o) produced by primary
trapped protons for all samples is 0.56 + = 0.08.

Solar Minimum vs. Solar Maximum Activation

Since LDEF exposure to trapped protons during the early part of the mission was at solar minimum
and during the latter part at solar maximum (Fig. 5), activities for long vs. short half-life isotopes can be
used to investigate uncertainty differences in the solar minimum (AP8MIN) vs. solar maximum
(AP8MAX) trapped proton models. For example, Fig. 6 shows the case of a relatively short half-life

product (46Sc from V sample in Exp. P0006, 84 day half-life). Two curves are shown: the production

rate vs. mission time, and the contribution of the production at times during the mission to the activity at
recovery, which shows that the recovery activity for this isotope is due to proton exposure during solar
maximum. The predicted-to-measured activity ratio in this case is 0.49 + 0.11. For a long half-life
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isotope where the activity is at recovery due exposure during solar minimum, we use the 54Mn activity

(half-life = 303 days) for the same nickel sample in Exp. P0006, for which the predicted/measured ratio is
0.60 + 0.12. Therefore, from comparisons with LDEF activation data we find no major difference in the
AP8MIN vs. AP8MAX model uncertainties.

MODEL COMPARISONS WITH OTHER LDEF RADIATION DATA

The above comparisons of predicted vs. measured activities for the activation samples.placed on
LDEF indicate that the AP8 model underpredicts the trapped proton flux for the LDEF mission by about a
factor of two. This result is consistent with model comparisons with other LDEF data, as summarized
below.

Figure 7 compares predicted and measured 22Na production in the aluminum clamps holding the
experiment trays on LDEF, which has been published previously (ref. 2). The average
predicted/measured activation around the spacecraft is 0.55 + about 0.15 (Fig. 7). This ratio is in
agreement with dose predictions that have been compared (ref. 1) with TLD doses measured on LDEF
(ref. 12) at shielding depths where the dose is due to trapped protons.

Figure 8 summarizes predicted vs. measured results for three different sets of data (tray clamp
activity, TLD dose, and radioisotopes in activation samples) at the same location on LDEF (Exp. P0006
in Tray F2). These results show that the model/data comparisons are consistent for the different data sets

and that the predictions are about a factor of two lower than 'all of the data sets.

Another data set suitable for including in the comparisons of Fig. 8 is the fission tracks measured

from fission foils (18lTa, 209Bi, 232Th, and 238U) included in Exp. P0006 (ref. 13). While these foils

respond to protons and neutrons from both trapped and galactic proton sources, an estimate based on
particle spectra from 1-D Monte Carlo calculations (ref. 7) shows that the energy dependence of the
fission cross section for the Bi foil is such that fission tracks are produced predominately by trapped

protons. Detailed calculations taking into account 3-D shielding effects have not yet been made to
compare with these data.

Preliminary comparisons of predicted vs. measured activation of the steel trunnions on LDEF,
which indicate somewhat better agreement than determined here for the activation samples, have been

reported (ref. 14). However, this early work was of a scoping nature and several approximations were
made in the predictions (e.g., the current estimate, ref. 4, of the trapped proton environment for LDEF
was not available at that time), so these early trunnion activation calculations need to be revised before
definitive trunnion data comparisons can be obtained.

SUMMARY

The predictions made here for the activation of metal samples placed on LDEF confirm results from
previous comparisons with spacecraft component (tray clamp) activation data and TLD dosimetry data that
radiation effects measured on LDEF that are due to the trapped proton environment are underpredicted by
about a factor of two. These results indicate that the AP8 trapped proton model underpredicts the actual

environment by a factor of two. Additional calculations to compare with other data sets (trunnion
activation and fission foil measurements) are planned to further check this conclusion.

An investigation of model improvements that would give better agreement with the LDEF data is
also planned. For example, predicted vs. measured differences for the trapped proton anisotropy is likely
due to the approximate nature of the effective atmospheric scale heights currently used as input to the
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anisotropy model, and work to determine more accurate effective scale height estimates is planned. Also,
recent work at the European Space Agency (ESA), ref. 15, shows that improvement to some of the
numerical interpolation procedures used in the AP8 model increases the predicted trapped proton flux for
low-Earth orbits, and comparisons with LDEF data using the ESA version of the AP8 model are planned.
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Table 1. Location of activation samples on LDEF.

Contained Exp. Tray
in Exp. No. Tray Position

P0006 F2 Trailing Side

A0114 C9 Leading Side

A0114 C3 Trailing Side

M0001 H12 Space End

M0002 G 12 Earth End

Activation Samples

Ni V Ta In

Co Ta In

Ni V

Co Ni V Ta In

Co Ni V Ta In

Table 2. Vertical shielding for activation samples.

Sample

Vertical shielding (g/cm 2) of activation sample in LDEF experiment way:

H-12 G-12 C-3 C-9 F-2

V thermal 2.8

cover

Ni thermal 2.8

cover

Co thermal
cover

Ta thermal 8.0

cover

In thermal 8.0

cover

1.7 13

1.7 13

1.7 13

1.7 13

1.7 13
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Table 3. Summary of LDEF activation sample measurements - preliminary.

AcUvabon

Nickel

Tantalum

Vanadium

Indium

Product

Iso_op_

Sc-46

Mn-54

Co-56

Co-57

Co-58

Co-60

Lu-172

LUo173

Hf-175

Ta-182

Sc-46

Rh-102

Ag-110m

Sn-113

Tray H12
(space end)

Exp. M0001
Activity

(pCi/kg) Fief

52 + 7.8 (c)

72 "," 3.6 (d)

66 + 28 (c)

70 + 2.6 (d)

400 + 7.2 (c)

395 + 15 (d)
73 + 3.4 (d)

7.6 + 3.4 (d)

9.0 + 0.87 (g)

12 + 7.8 (c)

56 + 2.1 (h)

120 + 9.8 (h)

38 + 5.7 (h)

116+ 8.1 (h)

21 + 6.0 (b)

13 + 1.7 (g)

2.2 + 0.6 (=')

3.2+ 0.8 (a)

35 + 4.2 (a)

Tray G12
(Earth end)

Exp. M0002
Activity

(pCilkg) Fief.

25 + 3.4 (e)

39 + e (c)
29 + 4.8 (e)

62 + 27 (c)

403 + 35 (e)

399 + 23 (c)
62 + 7.3 (e)

93 + 17 (c)

40 ± I (h)

171 + 12 (h)

1 9 + 2 (h)

45 + 4 (h)

16 + 1.3 (b)

16 + 1.4 (e)

2.3 + 0.3 (a)

2.3 + 0.3 (a)

21 + 1.2 (a)

22 + 3.8 (e)

In-l14m 190+ 115 (a_ 35±

Cobalt Mn-54 91 ±

62+

Co-56 22 +

Co-57 303 +

211+

Co-58 116 +

Co-60 204 + 20 (g) 26 +

23+

(a) I.,BL mcccuzements (Smith and Hurley, ref. 16)

(1)) SRL measurements (Wirm. ref. 17)

(c) MSFC/EKU measurements (Laird. ref. 18))
(d) Battelle measurements (from Laird. ref. 18)

15 (a_

3.s (e)

1.4 (f)

3.e (e)
s.4 (e)
1.6 (f)

20 (e)
2.2 (e)
o.e (f)

Tray C9
(leading side)

Exp. A0114
Activity

(pCilkg) Ref.

20 + 1.5 (b)

24 + 2.0 (h)

19.5 + 11 (c)

3.2 + 0.4 (a)

3.9+ 0.5 (a)
41 + 2.7 (a)

47 + 1 9 (c)

ss ± 35 (a)

41 ± 1.1 (a)

125 + 1.6 (a)

19 + 0.5 (a)
27 + 2.7 (9)

Tray C3
(trailingside)

Exp. A0114
Activity

(pCi/kg) Ref.

11 + 4 (c)
se + s (c)

61 + 9 (c)

466 + 18 (c)

59 ± 11 (c)

11 + 4 (c)

Tray F2
(trailingside)

Exp. P0006
Activity

(pCi/kg)

1.6 + 0.4

27 + 0.9

33+ 1.3

67+ 16

322 + 2

360 + 24

42+ 1.6

69+ 11

4.7 ± 0.3

75 ± 2 (h) 47 + 1

36 ± 1.1

143 ± 5 (h) 91 ± 4

161 ± 8.3

39 ± 2 (h) 25±2

37 ± 1.9

R_,

(a)
(a)

(a)
(c)
(a)
(c)
(a)
(c)
(a)

(h)

(a)
(h)
(a)
(h)

(h)

(al

(a)
(c)

38-+ 2 (h) 135 ± 4

90 ± 2.3

17± 1.1

21± 2.7

2.2 + 0.9 (a¿

5.1 ± 1.0 (a)

54 ± 3.6 (a)

los ± 2o la)

(e) LLNL measurements (Camp, from Harmon, ref. 19)

(0 LBL measurements (Smith and Hurley, from Harmon, ref. 19)

(3) Battelle measurements (Reaves. ref. 20)

(11) JSC measurements (D. Lindstrom. tel 21)
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Table 4. Production modes for nickel activation products.

Production Production Ptoducdon

Product Hnlf-life by Protons by Neun'ons by Decay

$¢-46 83.8 days

Mn-54 303 days

Ni-58 (p,8pSn) Sc-46

Ni-60 (p,Sp7n) S¢-46

Ni-58 (p,4pIn) Mn-54

Ni-60 (p,4p3n) Mn-54

Co-56 77 days Ni-58 (p,2pln) Co-56 Ni-58(p,p2n)Ni-56
Ec _ Co-56

Ni-60 (p,2p3n) Co-56 6.1d f

Co-57 270 days Ni-58 (p,2p)Co-57 Ni-58 (n,np)Co-57

Ni-60 (p,2,p2n)Co-57

Co-58 71.3 days Ni-60 (p,2pn)Co-58 Ni-58 (n,p)Co-58

Co-60 5.26 years Ni-62 (p,2pn)Co-60 Ni-60 (n,p)Co-60

Ni-58(p,pn)Ni-57
Ec.l_- _ Co-57
36hr

9.2hr Co-58gCo-58m ------->.

Co.60ml°--_--> -Co-60g

Table 5. Ratio of predicted-to-measured activity at recovery for nickel activation samples.

Isotope

Sc-46

Mn-54

Co-56

Co-57

Co-58

Co-60

Sample Location on LDEF

Exp. P0006

0.29

0.62 0.34

0.44 0.69

0.46 0.48

0.53 0.70

0.84 0.5O

Exp. A0114 Exp. MOO02 Exp. MOO01

0.58 0.38

0.78 0.64

0.46 0.63

0.44 0.57

AVERAGE: 0.53 0.54 0.57

Average for all isotopes in all samples: 0.55 ± = 0.1

0.55

Data Sources: Harmon (NASA MSFC)

Laird (EKU)

Smith and Hurley (LBL)

Camp (LLNL)

Reeves (PNWL)
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predicted/measured ratio (bottom).
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Fig. 8. Comparison of predicted vs. measured effects from trapped protons in LDEF
experiment P0006 (Tray F2, trailing side).
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